THE ZERO-TWO LAW IN BANACH LATTICE ALGEBRAS

BY

J. J. GROBLER

Department of Mathematics and Applied Mathematics, Potchefstroom University for CHE, Potchefstroom 2520, South Africa

ABSTRACT

Let A be a unital Banach lattice algebra and let $a \in A^+$ satisfy $||a|| \le 1$. Then either $||a^{n+1} - a^n|| = 2$ for all $n \ge 0$ or else $||a^{n+1} - a^n|| \to 0$ as $n \to \infty$. Cyclicity of the peripheral spectrum of a is also established.

1. Introduction

Since the inception of the zero-two law for positive contractions by R. Zaharopol [9] in certain L^p -spaces, a number of authors contributed to the extension of the result to arbitrary Banach lattices (see R. Wittmann [7], Y. Katznelson and L. Tzafriri [2]). The strongest results known thus far are due to H. H. Schaefer [4] and A. R. Schep [6]. Schaefer proved that in an arbitrary Banach lattice one has for a positive linear contraction T that either $||T^{n+1}-T^n||_r=2$ or else $||T^{n+1}-T^n||\to 0$ as $n\to\infty$, and Schep showed that in a Dedekind complete Banach lattice one has for the second alternative the stronger result that $||T^{n+1}-T^n||_r\to 0$ as $n\to\infty$. We show that Schep's result holds in an arbitrary Banach lattice algebra, i.e., that if $a \in A^+$, A a unital Banach lattice algebra, and if $||a|| \le 1$ then either $||a^{n+1} - a^n|| = 2$, or else $||a^{n+1}-a^n|| \to 0$ as $n \to \infty$. Our proof will not use Schaefer's results on the cyclicity of the peripheral spectrum of a positive operator and we consider it part of the contribution of this paper to the theory that, as far as these results go, our proofs are self-contained. In the first section we prove the results which are needed concerning the peripheral spectrum and in the second section we prove our main result.

2. The peripheral spectrum of positive elements

We refer the reader to [8] and to [3] for notation and terminology concerning Banach lattices and lattice algebras. For the theory of Banach algebras the reader may consult [1]. We denote the spectrum of an element a in a Banach algebra A by $\sigma(a)$ (or $\sigma(a, A)$ if necessary). The peripheral spectrum $\sigma_r(a)$ of a is defined as the set

$$\sigma_r(a) := \{ \lambda \in \sigma(a) : |\lambda| = r(a) \},$$

where r(a) denotes the spectral radius of a. We also denote by C(a) the commutative closed subalgebra of A generated by the unit 1 of A and a, and note that it easily follows from [1], I.5.12 that $\sigma_r(a, A) = \sigma_r(a, C(a))$.

A lattice algebra A with the property that $x \wedge y = 0$ implies that $ux \wedge y = xu \wedge y = 0$ for all $u \ge 0$ is called an f-algebra. It is well known that if E is a Banach lattice and if $u \ge 0$ then the principal ideal E_u generated by u in E is an f-algebra with unit u. The proof of the next result may be of some interest.

2.1. PROPOSITION. Let E be a Banach lattice, let $\mu \in E + iE$ and let B denote the f-algebra $E_{|\mu|} + iE_{|\mu|}$. If $0 \le \Phi \in B'$ is such that $\Phi(|\mu|) = 1 = |\Phi(\mu)|$ then we have for every $\sigma \in B$ that

$$\Phi(\mu\sigma) = \Phi(\mu)\Phi(\sigma).$$

Moreover, if Φ is strictly positive, then $\mu = \exp(i\alpha)|\mu|$ for some α .

PROOF. Let $\Phi(\mu) = \exp(i\alpha)$, $\mu_1 = \exp(-i\alpha)\mu = v + iw$, with $v, w \in B$. Then $\Phi(\mu_1) = 1$ and $\Phi(|\mu_1|) = \Phi(|\mu|) = 1$ with the result that $\Phi(|\mu_1| - \mu_1) = 0$ and hence $\Phi(|\mu_1| - v) = 0$ and $\Phi(w) = 0$. We prove that $\Phi(|w|) = 0$. Indeed, we have

$$|\mu_1| = \sup\{|v|\cos\beta + |w|\sin\beta : 0 \le \beta \le \pi/2\}$$

and hence for every $0 \le \beta \le \pi/2$, $|v|\cos \beta + |w|\sin \beta \le |\mu_1|$. This implies that

$$\sin \beta \Phi(|w|) \leq \Phi(|\mu_1| - |v|\cos \beta) = (1 - \cos \beta)\Phi(|\mu_1|)$$

and since $\tan(\beta/2) \to 0$ whenever $\beta \to 0$, we obtain $\Phi(|w|) = 0$. Hence, supposing that $|\sigma| \le k |\mu|$, we get

$$0 \le |\Phi(\sigma w)| \le \Phi(|\sigma w|) \le \Phi(k|\mu||w|) = k\Phi(|w|) = 0$$

and

$$|\Phi(\sigma|\mu_1|-\sigma v)| \leq \Phi(|\sigma|(|\mu_1|-v)) \leq k\Phi(|\mu_1|-v) = 0.$$

Consequently,

$$\Phi(\sigma\mu_1) = \Phi(\sigma v) + i\Phi(\sigma w) = \Phi(\sigma |\mu_1|) = \Phi(\sigma),$$

and finally

$$\Phi(\sigma\mu) = \exp(i\alpha)\Phi(\sigma\mu_1) = \Phi(\mu)\Phi(\sigma).$$

Assume now that Φ is strictly positive. Then it follows from $\Phi(|\mu_1| - v) = 0$ and $\Phi(|w|) = 0$ that $\exp(-i\alpha)\mu = v = |\mu_1| = |\mu|$ which is the desired result.

The following general result follows.

2.2. PROPOSITION. Let A be a unital Banach lattice algebra and let $\lambda \in \sigma_r(z)$, $z \in A^+$, r(z) = 1. If there exists a continuous linear functional $\mu \in A'$ satisfying $\mu(z^n) = \lambda^n = \mu(z)^n$ and $|\mu|(z^n) = |\mu|(z)^n$ for $n = 0, 1, \ldots$, then $\lambda^k \in \sigma_r(z)$ for all $k \in \mathbb{Z}$, i.e., $\sigma_r(z)$ is cyclic.

PROOF. Our assumptions on μ implies that both μ and $|\mu|$ are multiplicative linear functionals on the commutative closed algebra C(z). It follows that $|\mu|(z) \in \sigma(z, C(z))$ and since the spectral radius of z remains unchanged in the algebra C(z), we have $|\mu(z)| = 1 \ge |\mu|(z)$ and so $|\mu(z)| = 1 = |\mu|(z)$. For every σ in the f-algebra $(A')_{|\mu|}$ we therefore get by the preceding proposition that $(\sigma\mu)(z) = \sigma(z)\mu(z)$. In particular, since $\{v:|v|=|\mu|\}$ is a multiplicative group in the f-algebra, $\mu^k(z) = \mu(z)^k$ for all $k \in \mathbb{Z}$. We now show that μ^k is multiplicative on C(z). Let $n \in \mathbb{N}$. Then $\mu(z^n) = \mu(z)^n$ and so $|\mu(z^n)| = |\mu(z)|^n = 1$ and also $|\mu|(z^n) = |\mu|(z)^n = 1$. Since $z^n \ge 0$, it follows from 2.1 that z^n is multiplicative in the sense described in 2.1. In particular, $\mu^k(z^n) = \mu(z^n)^k$ from which we derive that

$$\mu^{k}(z^{n}) = \mu(z)^{kn} = (\mu(z)^{k})^{n} = (\mu^{k}(z))^{n}.$$

In the same manner, since $|\mu|(1) = 1 = |\mu(1)|$ and $1 \ge 0$ we also get $\mu^k(1) = 1$. It follows that μ^k is multiplicative on C(z). Hence, $\mu^k(z) \in \sigma(z)$. But, since we have $\mu^k(z) = \mu(z)^k$, it follows that $\lambda^k \in \sigma(z)$, and consequently, $\lambda^k \in \sigma_r(z)$ for all $k \in \mathbb{Z}$.

2.3. COROLLARY (E. Scheffold [5]). Let A be a commutative unital Banach lattice algebra and suppose that for every multiplicative linear functional μ on A the functional μ is also multiplicative. Then $\sigma_r(z)$ is cyclic for every $z \in A^+$.

Following standard terminology from operator theory, we call an element a in a Banach algebra A normaloid if r(a) = ||a||.

2.4. THEOREM. Let A be a unital Banach lattice algebra and let $z \in A^+$ be normaloid. Then z has a cyclic peripheral spectrum.

PROOF. Let $z \in A^+$ and suppose without loss of generality that r(z) = 1. If $\lambda \in \sigma_r(z)$ then $\lambda - z$ is a topological divisor of zero, i.e., there exists a sequence $(a_n) \subset A$, $||a_n|| = 1$ such that $||(\lambda - z)a_n|| \to 0$ as $n \to \infty$. Choose $\phi_n \in A'$ such that $\phi_n(a_n) = 1$, $||\phi_n|| = 1$ and define $\mu_n \in A'$ by $\mu_n(b) := \phi_n(ba_n)$ for each $b \in A$ and for all $n \in \mathbb{N}$. Then $||\mu_n|| \le 1$ for all $n \in \mathbb{N}$. Let $\mu \in A'$ be a $\sigma(A', A)$ -clusterpoint of the sequence (μ_n) . We claim that μ satisfies the conditions of Proposition 2.2. Clearly, $\mu(1) = 1$. Furthermore, from the inequality

$$|\mu(z^{n}) - \lambda \mu(z^{n-1})|$$

$$\leq |\mu(z^{n}) - \phi_{k}(z^{n}a_{k})| + |\phi_{k}(z^{n}a_{k}) - \lambda \phi_{k}(z^{n-1}a_{k})|$$

$$+ |\lambda \phi_{k}(z^{n-1}a_{k}) - \lambda \mu(z^{n-1})|$$

$$\leq |\mu(z^{n}) - \mu_{k}(z^{n})| + ||\phi_{k}|| ||z^{n-1}|| ||(\lambda - z)a_{k}||$$

$$+ |\lambda \mu_{k}(z^{n-1}) - \lambda \mu(z^{n-1})|$$

we derive by induction that $\mu(z^n) = \lambda^n$ for $n = 0, 1, \ldots$. Finally,

$$1 = |\mu(z^n)| \le |\mu|(z^n) \le ||\mu|| ||z^n|| \le 1.$$

This completes the proof.

REMARK. Proposition 2.2 can be used to prove the cyclicity of both the spectrum and the order spectrum of a positive operator on a Banach lattice if the operator satisfies the growth condition (G) of [3]. One can, in the presence of condition (G), show that a functional with the properties required in 2.2 exists. Note also that if a positive operator is normaloid, then it does satisfy condition (G).

2.5. COROLLARY. If A is a unital Banach lattice algebra and if $z \in A^+$ is a contraction with r(z) = 1 then $\sigma_r(z)$ is cyclic.

3. The zero-two law

Our first lemma contains the idea which lies at the heart of the zero-two law.

3.1. LEMMA. Let A be a complex unital Banach lattice algebra and let $z \in A^+$ satisfy $||z|| \le 1$. Let λ be an element of the unit circle in \mathbb{C} such that the numbers $\lambda^{n+k_1}, \ldots, \lambda^{n+k_m}$ are distinct. If there exists a linear functional $\mu \in A'$, $||\mu|| \le 1$ satisfying $\mu(z^n) = \lambda^n$ and $|\mu|(z^n) = 1$ for all $n \in \mathbb{N}$, and if $\varepsilon_j = \pm 1$, then

$$\|\varepsilon_1 z^{n+k_1} + \cdots + \varepsilon_m z^{n+k_m}\| = m$$

for all $n \in \mathbb{N}$.

PROOF. Let B denote the band generated by $|\mu|$ in A' and let U_j denote the canonical image of z^{n+k_j} in the order continuous dual B_{00}^{∞} of B for $j=1,\ldots,m$. Denote by C_j the carrier band of U_j in B and by P_j the band projection of B onto C_j for $1 \le j \le m$. From our hypothesis we get $|U_j(\mu)| = 1 = U_j(|\mu|)$ and it follows from 1.1 that $P_j\mu = \exp(i\alpha_j)P_j|\mu|$. But, since

$$P_i\mu(z^{n+k_i}) = \mu(z^{n+k_i}) = \lambda^{n+k_i} = \exp(i(n+k_i)\theta),$$

with $\theta \neq 0$, we may put $\alpha_j = (n + k_j)\theta$. We now claim that $U_p \wedge U_q = 0$ for $0 \leq p$, $q \leq m$. If not, $C_{pq} := C_p \cap C_q \neq \{0\}$ and therefore, if P_{pq} denotes the projection of B onto the band C_{pq} , $P_{pq} |\mu| \neq 0$ since $|\mu|$ is a weak order unit in B. If $x \in A$ is such that $P_{pq} |\mu|(x) > 0$, we get

$$P_{pq}\mu(x) = P_{pq}P_{p}\mu(x) = \exp(i(n+k_{p})\theta)P_{pq}P_{p}|\mu|(x)$$
$$= \exp(i(n+k_{p})\theta)P_{pq}|\mu|(x)$$

and also in the same manner, $P_{pq}\mu(x) = \exp(i(n+k_q)\theta)P_{pq}|\mu|(x)$. This implies that $\lambda^{n+k_p} = \lambda^{n+k_q}$, contradicting our hypothesis. Finally, let

$$v := \sum_{j=1}^{m} \exp(-i\alpha_j) P_j \mu.$$

Then $|v| \leq |\mu|$ and

$$\nu\left(\left|\sum_{j=1}^{m} \varepsilon_{j} z^{n+k_{j}}\right|\right) = \sum_{j=1}^{m} U_{j}(\nu) = \sum_{j=1}^{m} \exp(-i\alpha_{j}) P_{j} \mu(z^{n+k_{j}}) = \sum_{j=1}^{m} |\mu|(z^{n+k_{j}}) = m.$$

Hence, since $||v|| \le 1$, and since z is a contraction,

$$\left\|\sum_{j=1}^m \varepsilon_j z^{n+k_j}\right\| = m.$$

3.2. THEOREM. Let A be a complex unital Banach lattice algebra and let $z \in A^+$, $||z|| \le 1$. Then either $||z^n - z^{n+1}|| = 2$ for all $n \in \mathbb{N}$, or else $||z^n - z^{n+1}|| \to 0$ as $n \to \infty$.

PROOF. Suppose that $||z^n - z^{n+1}|| \not \to 0$. Using the left regular representation $a \mapsto \lambda_a$ of A into L(A), defined by $\lambda_a b := ab$ we have that λ_z is a contraction satisfying $||\lambda_z^n - \lambda_z^{n+1}|| \not \to 0$. From a result of Katznelson and Tzafriri [2] it follows that $\sigma(\lambda_z)$ intersects the unit circle in at least one point $\lambda \neq 1$. Since $\sigma(\lambda_z) = \sigma(z)$ ([1]) and since the spectral radius $r(z) \leq 1$ we have $\lambda \in \sigma_r(z)$, and $\lambda^n \neq \lambda^{n+1}$ for all $n \in \mathbb{N}$. Exactly as in the proof of 2.4 we find a functional μ which satisfies the conditions of Lemma 3.1 and our proof is complete.

The next two generalizations are due to A. R. Schep in the operator case. We refer to [6] for the simple proofs.

- 3.3. COROLLARY. Let A be a complex unital Banach lattice algebra and z a normaloid element with r(z) = 1 satisfying $z^n \wedge z^{n+1} = 0$ for infinitely many n. Then $||z^n z^{n+1}|| = 2$ for all $n \in \mathbb{N}$ and $\sigma_r(z)$ consists of a finite union of non-trivial groups of roots of unity or equals $\{z : |z| = 1\}$.
- 3.4. PROPOSITION. Let A be a complex unital Banach lattice algebra and let $z \in A^+$ satisfy $||z|| \le 1$. Then, for every $k \ge 1$ we have either $||z^n z^{n+k}|| = 2$ for all $n \ge 0$ or $||z^n z^{n+k}|| \to 0$ as $n \to \infty$. Moreover, $||z^n z^{n+k}|| \to 0$ if and only if every $\lambda \in \sigma_r(z) \cap \{\gamma : |\gamma| = 1\}$ satisfies $\lambda^k = 1$.
- 3.5. COROLLARY. Let $z \in A^+$ satisfy $||z|| \le 1$. Then the following are equivalent.
 - (i) $||z^n z^{n+k}|| = 2$ for all $n \ge 0$ and for all $k \ge 1$.
 - (ii) $\sigma_r(z) = {\lambda : |\lambda| = 1}.$
- (iii) $\| \Sigma_{j=1}^p \varepsilon_j z^{n+k_j} \| = p$ for all $n \ge 0$ and for every choice of integers $1 \le k_1 < \cdots < k_p (\varepsilon_j = \pm 1)$.

PROOF. (iii) \Rightarrow (i) is immediate and (i) \Rightarrow (ii) follows from the preceding results.

(ii) \Rightarrow (iii): Let λ , $|\lambda| = 1$ be such that the numbers λ^{n+k_j} are distinct for j = 1, 2, ..., p. The result then follows from 3.1.

We say that $\sigma_r(z)$ has a non-trivial finite group structure if it is a finite union of non-trivial groups of roots of unity.

3.6. COROLLARY. Let $z \in A^+$, $||z|| \le 1$. Then $\sigma_r(z)$ has a non-trivial finite

group structure if and only if there exists a unique integer $k_0 \ge 2$ such that $\|z^n - z^{n+k_0}\| \to 0$ as $n \to \infty$ and $\|z^n - z^{n+k}\| = 2$ for all $1 \le k < k_0$ and for all $n \ge 0$. Moreover, k_0 is the least common multiple of the orders of the finite groups of which $\sigma_r(z)$ is the union.

PROOF. If $\sigma_r(z)$ has a non-trivial group structure, then $||z^n - z^{n+1}|| \not\to 0$ by the result of Katznelson and Tzafriri. Also, $||z^n - z^{n+k}|| \neq 2$ for all $k \ge 1$ and for all $n \ge 0$ by 3.5. It follows that there exists an integer as claimed.

On the other hand, if such an integer k_0 exists, $||z^n - z^{n+1}|| \not \to 0$ since $k_0 \ge 2$, and also $||z^n - z^{n+k}|| \ne 2$ for all n and k. Therefore, $\sigma_r(z)$ has a non-trivial finite group structure.

By 3.4, $\lambda^{k_0} = 1$ for every $\lambda \in \sigma_r(z)$ and so k_0 is a common multiple of the orders of the subgroups of roots of unity in $\sigma_r(z)$. But, if $k < k_0$, there exists $\lambda \in \sigma_r(z)$ such that $\lambda^k \neq 1$. This shows that k_0 is the least common multiple.

REFERENCES

- 1. F. F. Bonsall and J. Duncan, Complete normed algebras, Springer-Verlag, Berlin-Heidelberg-New York, 1973.
- 2. Y. Katznelson and L. Tzafriri, On power bounded operators, J. Funct. Anal. 68 (1986), 313-328.
- 3. H. H. Schaefer, Banach Lattices and Positive Operators, Springer-Verlag, Berlin-Heidelberg-New York, 1974.
- 4. H. H. Schaefer, The zero-two law for positive contractions is valid in all Banach lattices, Isr. J. Math. 59 (1987), 241-244.
 - 5. E. Scheffold, Über komplexe Banachverbandsalgebren, J. Funct. Anal. 37 (1980), 382-400.
 - 6. A. R. Schep, A remark on the uniform zero-two law for positive contractions, preprint.
 - 7. R. Wittman, Ein starkes "Null-Zwei"-Gesetz in Lp, Math. Z. 197 (1988), 223-229.
 - 8. A. C. Zaanen, Riesz Spaces II, North-Holland, Amsterdam, 1983.
- 9. R. Zaharopol, The modulus of a regular linear operator and the "zero-two" law in L^p spaces (1 , J. Funct. Anal. 68 (1986), 300-312.